Queueing Predictions and LLMs
Challenges and Open Problems

Part 1 wy
Michael Mitzenmacher &
Part 2
Rana Shahout
Harvard University

Survey Article That Goes With The Talk

We gratefully acknowledge support from the Simons
Qggp Cornell University Foundation, member institutions, and all Donate
N7 =

contributors.

Search... All fields b Search

NG| -
d I‘_\lV > ¢s > arXiv:2503.07545 Help | Advanced Search

Computer Science > Artificial Intelligence Access Paper:
[Submitted on 10 Mar 2025] :

. o View PDF
Queueing, Predictions, and LLMs: Challenges and Open Problems TeX Source
Michael Mitzenmacher, Rana Shahout (m)(ﬂig:::is

Queueing systems present many opportunities for applying machine-learning predictions, such as estimated service times, to improve system Current browse context:
performance. This integration raises numerous open questions about how predictions can be effectively leveraged to improve scheduling decisions. C:Alre T—
Recent studies explore queues with predicted service times, typically aiming to minimize job time in the system. We review these works, highlight the nev:)l r\:acent | 2025-03
effectiveness of predictions, and present open questions on queue performance. We then move to consider an important practical example of using Change to browse by:
predictions in scheduling, namely Large Language Model (LLM) systems, which presents novel scheduling challenges and highlights the potential for cs

predictions to improve performance. In particular, we consider LLMs performing inference. Inference requests (jobs) in LLM systems are inherently ¢s.DS

complex; they have variable inference times, dynamic memory footprints that are constrained by key-value (KV) store memory limitations, and

multiple possible preemption approaches that affect performance differently. We provide background on the important aspects of scheduling in LLM References & Citations

NASA ADS
systems, and introduce new models and open problems that arise from them. We argue that there are significant opportunities for applying insights Google Scholar
and analysis from queueing theory to scheduling in LLM systems. Semantic Scholar

Export BibTeX Citation
Subjects: Artificial Intelligence (cs.Al); Data Structures and Algorithms (cs.DS)
Cite as: arXiv:2503.07545 [cs.Al]
(or arXiv:2503.07545v1 [cs.Al] for this version)
https://doi.org/10.48550/arXiv.2503.07545 @

Bookmark

)
e

Submission history

From: Rana Shahout [view email]
[v1l] Mon, 10 Mar 2025 17:12:47 UTC (574 KB)

Simple Scheduling Example

* Suppose | have m short jobs requiring service time s, and n
long jobs requiring service time t. I'm interested in average
time in the system.

* | don’t know which jobs are which, and schedule randomly.
* Expected time is:

* | know which jobs are which, and schedule short jobs first.
* Expected time is:

Simple Scheduling Example

* Suppose | have m short jobs requiring service time s, and n
long jobs requiring service time t. I'm interested in average
time in the system.

* | know which jobs are which, and schedule short jobs first.
(m?-m)s+(n?-n)t+mns
2(n+m)

* Expected time is:

* | don’t know which jobs are which, and schedule randomly.
(m+n)((m—1)s+(n—1)t)+mt+ns
2(n+m)

* Expected time is:

Prediction Question

* What if we have predictions:
* Short jobs are predicted long incorrectly with probability p
* Long jobs are predicted short incorrectly with probability g

Prediction Question

* What if we have predictions:
* Short jobs are predicted long incorrectly with probability p
* Long jobs are predicted short incorrectly with probability g

* Expression is a little ugly. Nice homework exercise though.

Prediction Question

* What if we have predictions:
* Short jobs are predicted long incorrectly with probability p
* Long jobs are predicted short incorrectly with probability g

* Expression is a little ugly. Nice homework exercise though.

* Asymptotic gap from optimal
nm(t—s)(p+q)

2(n+m)
nm(t—s)

2(n+m)

* Predictions:

e Random:

Motivating Example: Search

Given a sorted array of integers A[1...n], and a query g check if q is in the array.

Motivating Example: Search

Given a sorted array of integers A[1...n], and a query g check if q is in the array.

Motivating Example: Search

Given a sorted array of integers A[1...n], and a query g check if q is in the array.

7/
Binary Search

Motivating Example: Search

Given a sorted array of integers A[1...n], and a query g check if q is in the array.

2 4 7 11 16 22 37 38 44 88 89 93 95 96 97 98 99

N/ ™>~_ ~

7/
Binary Search

Motivating Example: Search

Given a sorted array of integers A[1...n], and a query g check if q is in the array.

7/
Predict where q appears; use doubling binary search.

Search Costs

* Binary search: O(log n)
* Prediction-based search: O(log |prediction error|)
* Plus time to do the prediction.

* Robust: In the worst case, prediction-based search is also
O(log n)
* Not “worse” than binary search (at least symptotically)

e Consistent: In the best case (and even “near-best-case”),
prediction-based search is constant-time.

* Essentially optimal with perfect information.

Search Costs

* Binary search: O(log n)
* Prediction-based search: O(log |prediction error|)
* Plus time to do the prediction.
* Robust: In the worst case, prediction-based search is also
O(log n)

e Consistent: In the best case (and even “near-best-case”),
prediction-based search is constant-time.

Machine Learning Can Improve Traditional Algorithms

Motivation

* “Traditional” algorithms based on worst-case analysis.
* Very important analysis paradigm.

* Has moved theory and practice forward dramatically.
e But “worst-case” isn’t everything.

* Theory has tried to move beyond worst-case analysis
* Random/perturbed/limited inputs
* Approximation algorithms/heuristics

* Machine learning offers possibilities for new algorithmic
paradigms

CUNIENID

27.3 Defining Prior-Independence 591

27.4 Sample-Based Approach: Single Item 593
27.5 Competition-Based Approach: Multiple Items 598
27.6 Summary 602
27.7 Notes 603

28 Distribution-Free Models of Social Networks 606
Tim Roughgarden and C. Seshadhri
28.1 Introduction 606
- 28.2 Cliques of ¢-Closed Graphs 607
, 28.3 The Structure of Triangle-Dense Graphs 612
28.4 Power-Law Bounded Networks 615
28.5 The BCT Model 619

) 28.6 Discussion 621
28.7 Notes 623
29 Data-Driven Algorithm Design 626

Maria-Florina Balean

29.1 Motivation and Context 626
29.2 Data-Driven Algorithm Design via Statistical Learning 628
29.3 Data-Driven Algorithm Design via Online Learning 639
29.4 Summary and Discussion 644
30 Algorithms with Predictions 646
Michael Mitzenmacher and Sergei Vassilvitskii
30.1 Introduction 646
30.2 Counting Sketches 649
30.3 Learned Bloom Filters 650
30.4 Caching with Predictions 652
30.5 Scheduling with Predictions 655
Edited by 30.6 Notes 660
TIM ROUGHGARDEN e

Survey Article: Mitzenmacher and Vassilvitskii
Algorithms with Predictions, https://arxiv.org/abs/2006.09123

https://arxiv.org/abs/2006.09123

[NON @ ALPS X +
<« - C 25 algorithms-with-predictions.github.io ¥ 3 a @

oo @ portrait @ 1604.08657v1.pdf My Rational Exponent.. M xington w Class Roster Link “ Netflix & Request1099HC @ OFr> G picture computer -... B Supergirl Comic B... » 3 All Bookmarks

Algorithms with Predictions PAPERLIST FURTHER MATERIAL HOW TO CONTRIBUTE ~ ABOUT

—ss

Newest first~ 256 papers
‘07 '09 10 17 '18 '"19 '20 '21 '22 '23 '24 '25

Online Metric Matching: Beyond the Worst Case ~ Yang, Yu (arxiv 25 @EEEEIAREETEY €D dynamic / data structure

With a Little Help From My Friends: Exploiting Probability Canonne, SGIEP) 2llocation / matching X online X prophet inequality m“

Distribution Advice in Algorithm Design Chen, Mestre
Robust Gittins for Stochastic Scheduling Moseley, Newman, Pruhs, Zhou [arXiv 25 Conline X scheduling

Faster Global Minimum Cut with Predictions ~ Moseley, Niaparast, Singh (andiv 25) @ENIEEEGE @ILTEELD game theory / mechanism design
Learning-Augmented Frequent Directions ~Aamand, Chen, Gollapudi, Silwal, Wu arxiv 25 (Euied differential privacy

Efficiently Solving Discounted MDPs with Predictions Lixing Lyu, Jiashuo Jiang, arXiv 25 @ m sample complexity

on Transition Matrices Wang Chi Cheung prior/related work

Mechanisms for Selling an Item Among a Strategic Bidderanda Caragiannis, arXiv '25 game theory / mechanism design allocation / matching
Profied Aget calntas

Incremental Approximate Single-Source McCauley, Moseley, EIO\AVERN dynamic / data structure X graph problems caching / paging
Shortest Paths with Predictions Niaparast, Niaparast, Singh

Utilitarian Distortion with Predictions Filos-Ratsikas, Kalantzis, Voudouris I AVERN game theory / mechanism design Zonputationa lgee Mety

convex body chasing
Pareto-Optimality, Smoothness, and Stochasticity in Learning-Augmented ~ Benomar, Croissant, Perchet, arxiv 25) I

One-Max-Search Angelopoulos

distributed algorithms
Algorithms with Calibrated Machine Learning Predictions Shen, Vitercik, Wikum arXiv '25 m scheduling e

Bampis, Escoffier, arXiv '25 graph problems X routing / TSP X scheduling experimental evaluation

Polynomial Time Learning-

Using Machine Learning: Predictions

* Machine learning can be used to provide predictions

* Given good predictions, can we get better than worst-case
algorithmes.

* Question: what should we allow when predictions are bad?

* Would like provable statements.
* Because I’'m theoretically inclined.
* If my predictions are X-good, my algorithm’s performance will be Y.

* We call this algorithms with predictions or learning-
augmented algorithms.

Queues

Standard Queueing Model

* Arrival Process
* Usually Poisson arrivals; exponentially distributed service times

* Service Time
* For theory, exponential service times are nice
* In practice, some kind of heavy-tailed distribution
* In simple models, service time is unknown

* Service Discipline
* First-In First-Out (FIFO), = First-Come First-Served
e Others possible
* Preemption

Main Result for Standard Queues

* For M/M/1 queues
* FIFO queues
* Poisson arrivals of rate A< 1
* Exponential service times with mean 1

* The steady state expected time in the system is

1/(1—=4)

Known Service Times

e Can do better if service times are known.
* Shortest job first. (Non-preemptive.)
* Shortest remaining processing time. (Preemptive.)
* Preemptive shortest job first. (Preemptive.)

* All of these have known formulae for Poisson arrivals,
general service time distributions.

Predicted Service Times

* Suppose we have an ML algorithm that can predict service
times. Then we can consider policies:
* Shortest predicted job first (SPJF).
* Shortest predicted remaining service time (SPRPT).
* Preemptive shortest predicted job first (PSPJF).

* A natural probabilistic model:

* Service distribution given by density function g(x,y),
representing density of jobs with true service time x and
predicted service time y.

Shortest Job First Queues

* Let S be service distribution, f; the density.

* Analysis uses that once a job arrives, can ignore jobs with higher
service times that arrive.

* So only important quantities for a job with service time x are:
p = A fto:O tf:g (t)dt Rate of inflow of work

X
Dy = A ft=0 tf:g (t)dt Rate of inflow of work for jobs with service < x

* Expected waiting time in queue for job of service time x given by

_ __ PE[S?]
EIWWOII = srsiici—po

Shortest Predicted Job First Queues

* Let S be service distribution, f, the density, g(x,y) joint service-
prediction density, f,, the density of predicted service times.

* Analysis uses that once a job arrives, can ignore jobs with higher
predicted service times that arrive.

* So only important quantities for a job with service time x are:

0.0
p = A ft=0 tf:g (t)dt Rate of inflow of work
o _ y © Rate of inflow of work for jobs with
— X
Py A ft=0 fx=0 2 (X, t) dx dt predicted service < y

* Expected waiting time in queue for job of predicted time y given by

/ _ pPE[S?]
E[W (y)] — ZE[S](l_ply)Z

Price of Misprediction

* A competitive ratio formulation: price of misprediction

 What is the (worst-case) ratio of the expected total waiting time
using the ML algorithm compared to having perfect information?

* Not vs OPT, but vs algorithm

* End result: by integrating over service/predicted service
times, get a “simple” formula for price of misprediction for
shortest job first.

foo fo(¥)
y

=0 (1_.0,312)
oG

dy

SOAP : A Key Analysis Method

* These policies can be analyzed directly

* But there’s a useful general methodology, that is useful for scheduling
with predictions

* SOAP: Schedule Ordered by Age-based Priority
 Ziv Scully, Mor Harchol-Balter, Alan Scheller-Wolf

* M/G/1 queues: can calculate expected time in system in
equilibrium
* Job priority determined by a “rank” (lowest rank wins)
* Rank can depend on a job type (known, fixed on entry) and the amount

of service received.

 Example: SRPT—a job’s type is its service time s, received service a, rank would
be s —a.

 Example: SPRPT— a job’s type is its service and predicted time (s,z), received
service a, rank would be z - a.

Scheduler

* More generally, instead of thinking of policies, think of a
scheduler decdides what job gets served at any point in time.

* SOAP allows analysis of a broader class of interesting
schedulers.

 Schedulers based on suitable rank functions.

Test Examples

Service times are exponentially distributed, mean 1
Prediction times for a job of true size x is exponentially distributed with mean x

SRPT SRPT | SPRPT | SPRPT | FIFO SJF SJF SPJF SPJF FIFO

A Eqns Sim Eqns Sim Eqns A Eqns Sims Eqns Sims Eqns

0.5 1.4254 1.4251 1.6531 1.6588 2.00 0.5 1.7127 1.7128 1.7948 1.7949 2.00

0.6 | 1.6041 | 1.6039 | 1.9305 | 19397 | 2.50 0.6 | 19625 | 19625 | 2.1086 | 2.1087 | 2.50

0.7 | 1.8746 | 1.8757 | 2.3539 | 2.3684 3.33 0.7 | 23122 | 23121 | 2.5726 | 2.5730 3.33

0.8 | 2.3528 | 2.3519 | 3.1168 | 3.1376 | 5.00 0.8 | 2.8822 | 2.8828 | 3.3758 | 3.3760 | 5.00
0.9 | 3.5521 | 3.5486 | 5.04808 | 5.0973 | 10.00 09 | 4.1969 | 4.1987 | 5.3610 | 5.3609 | 10.00
095 | 5.5410 | 5.5466 | 8.3221 | 8.4075 | 20.00 095 | 6.2640 | 6.2701 | 8.6537 | 8.6541 | 20.00
0.98 | 10.4947 | 10.5003 | 16.6239 | 16.7852 | 50.00 0.98 | 11.2849 | 11.2734 | 16.9502 | 16.9782 | 50.00
0.99 | 17.6269 | 17.6130 | 28.7302 | 28.7847 | 100.00 0.99 | 18.4507 | 18.4237 | 29.0536 | 29.1162 | 100.00

Equations and simulations match.

Significant improvements over no information, especially under high loads.

Open Questions

* Better/more realistic models of predictions?
* Models of point predictions.
* Predictions as distributions, instead of point values.
* Predictions that degrade over time.

e Extensions of SOAP?

* Rank cannot depend on queue state, such as number of jobs in the
queue.

e Gittins-optimal policies?

Weak Predictions: Single Bit

* What if you could only get a “single bit” hint?
* Is the job “short” or “long”?
* Bigger than some threshold, or smaller?
e Put it in front, or in back?

* A natural model
* May be an easier prediction problem
* May be easier to implement (no need to remember times)
* May be limited in communication

Single Bit Model

* Use a threshold: above a threshold is big, below is small.

* Can consider perfect single bit hints, or hints from
predictions.

e Equations derived in terms of arrival rate, service
distribution, threshold, prediction scheme. (See paper:
Queues with Small Advice.)

» Specific example: exponential model -- job of true size x has
predicted size exponentially distributed with mean x.

* Here we choose optimal threshold from experiments.

Theoretical Results

* Analysis follows standard methods... but model leads to fun integrals.

* Expected sojourn time for exponential service time, non-preemptive,
exponential predictions involves modified Bessel functions of the first

and second kind.
A1 — A1 —2VTK(2VT))) e
(1-N(1—-A1-2TK,(2VT)))

Se,'n,e —

* Expected sojourn time for Weibull service time, non-preemptive,
exponential predictions involves the Meijer G-function.

3,0
3A (1 A (1 QI;rGO,S (g ‘ %'—0’ %)))
Sw,-n,e —

Table 1. Results for exponentially distributed service times. Prediction results are using exponential predic-

tions.

Results for Single Bit Predictions

FIFO THRESHOLD | THRESHOLD | SRPT PREDICTION | PREDICTION | SPRPT
A NO PREEMPT PREEMPT NO PREEMPT PREEMPT

0.50 || 2.000 1.783 1.564 1.425 1.850 1.698 1.659
0.60 || 2.500 2.089 1.814 1.604 2.209 2.013 1.940
0.70 || 3.333 2.542 2.203 1.875 2.761 2.517 2.369
0.80 || 5.000 3.329 2.910 2.355 3.757 3.451 3.143
0.90 || 10.00 2.278 4.755 3.552 6.366 2.960 2.097
0.95 || 20.00 8.335 7.914 2.332 10.848 10.372 8.424
0.98 || 50.00 16.495 15.735 10.436 22.418 21.909 16.696

Prediction times for a job of true size x is exponentially distributed with mean x
For threshold schemes, consider if prediction is above or below threshold

Results for Single Bit Predictions

FIFO THRESHOLD | THRESHOLD | SRPT || PREDICTION | PREDICTION | SPRPT
NO PREEMPT PREEMPT NO PREEMPT PREEMPT

0.50 || 4.000 3.012 1.608 1.411 3.155 1.736 1.940
0.60 || 5.500 3.676 1.867 1.574 3.918 2.062 2.280
0.70 || 8.000 4.565 2.258 1.813 4.983 2.568 2.750
0.80 || 13.00 2.955 2.951 2.217 6.721 3.481 3.519
0.90 || 29.00 8.940 4.649 3.154 10.630 2.790 5.224
0.95 || 58.00 13.223 7.448 4.517 16.546 0.846 7.788
0.98 || 148.0 22.451 15.194 7.666 29.346 20.918 13.404

Table 2. Results for Weibull distributed service times. Prediction results are using exponential predictions.

Prediction times for a job of true size x is exponentially distributed with mean x
For threshold schemes, consider if prediction is above or below threshold

Open Problems

* Better/more realistic prediction models?

* Can we optimize predictions in this setting?
* Predicting a short job as long is worse than predicting a long job as
short.
* Tail behaviors when using 2 or more classes?

* See Chen and Dong: Scheduling with service-time information: The
power of two priority classes

Obvious Shortcoming for SRPT

* When a prediction is smaller than a job size, predicted
remaining service time will be 0.

* Very bad if a big job is predicted small.

* We should do something for jobs that sit at the front of the
gueue with predicted remaining service time O.

* Examined in: Uniform Bounds for Scheduling with Job Size
Estimates, Scully, Grosof, Mitzenmacher

What We Want From a Scheduling Policy

* Consistent : Near optimal when predictions are good.

* Robust : Not too much worse than not using predictions
when predictions are bad.

* Graceful degradation (smoothness) : performance degrades
gracefully as predictions get worse.

M/G/1 Setting with Predictions

* Performing well with arbitrary errors is too much to ask for.

* Model: (8, a)-bounded noise [f for “below”, a for “above”]

* True size is s, then estimate z governed by joint distribution on
pairs (s,z), with z € [Bs, as].

* We find a policy P that is
: E[T
. C-con5|stentE:[T[]P]/E[TSRPT] - Cas f,a—->1 (C=1)
* G-graceful : P/E[TSRPT] <G%p forallg,a (G =3.5)

° E[TP] .
Show constant robustness, /E[TSRPT] < Rforall 5, a,is
not possible.

Scheduling by Rank

(o) SRPT
rank; (a)=s—a)
size s

lower is
better

- dg€ a
S12€ S &

Scheduling by Rank
Naive

ra}\‘lks,z(a) =z—a

estimate 2

lower is
better

age a

Scheduling by Rank

Naive
rank, (a)=2z—a
T
estimate g

L

big jobs spend
long time here f @

Scheduling by Rank

Checkmark

rank; (a) = [z —a]

preempts jobs
just before end

estimate 2

Scheduling by Rank

Radical

rank; ;(a) = min{|z —a|, z}

estimate 2

Related Work

* Azar, Leonardi, Touitou consider the online setting (not
gueueing theoretic).
* Job size predictions are within a factor p of actual size.

 Call their algorithms distortion-oblivious (1 does not need to be
known in advance).

* Get O(n log 1) competitive-ratio where p is the maximum
distortion.

Open Questions

* Better policies/bounds for graceful degradation and
consistency, in this setting?

* Weaker restrictions on the predictions for such results?
* Bounds for other desirable criteria, such as tail behaviors?

* Could there be advantages to going beyond rank-based
scheduling?

Multiple Servers

* \Very few results for using predictions in multiple server
settings!

* Mostly wide open with open questions.
e See survey for more discussion.

* One analyzable system: Power of 2 choices with 1-bit
predictions.
* Power of 2 choices: use fluid limit analysis to analyze limiting

“infinite server” system where each job picks shortest of 2 (or d)
queues.

* With 1-bit predictions, state space is “small” enough can write
limiting differential equations (and calculate them) in some cases.

III

Open Questions

* Analyze power of 2 choices more generally with predictions?

* Most any multiple server question with predictions remains
open....

Predictions, with Costs

* Algorithms with predictions area is still “new”.

* In theoretical works, common that predictions come for free
* No discussion of costs of prediction

* For scheduling, this seems unnatural.
* Predicting a job’s service time may itself take some server time...

* Interesting extreme case: introducing predictions could overload a
heavily loaded system.

* Predictions may not be helpful, and actively harmful.

Prediction Cost Models

e External Cost Model

* Predictions provided from some external source
* Does not affect service times

* But has some cost, e.g., fixed cost per prediction
* Some jobs may not use a prediction

* Expected cost per job = response time + prediction cost

e Server Time Cost Model
* Predictions require some amount of service time, e.g., fixed time

* Predictions must also be scheduled
* Expected cost per job = response time

New Scheduling Strategies with Costs

* Can re-analyze M/G/1 scheduling schemes like SPRPT, 1-bit
predictions with costs

* But also consider new settings

e Suppose predictions have different costs
e 1-bit predictions are cheap
 Service time predictions are more expensive

* SkipPredict: 1-bit predictions for all jobs, service time
predictions only for predicted long jobs.

SkipPredict, Server Time Model

* A job arrives at a server....

* |t needs a 1-bit prediction (short or long), joins 1-bit prediction queue.
« 2" highest priority.

* |f predicted short, it joins a queue for short jobs.

* These jobs have highest priority.
* Served FIFO.

* |If predicted long, joins a queue for a second prediction.
* Where its service time is predicted.

* Predicted long jobs served by SPRPT.
* Lowest priority.

SkipPredict

FCFS

Highest
Priority

DPrediction Job
b

Jobs Enter Here

Prediction

v

Short
or Jee
Long?

Prediction

FCFS

Server Cost Model

FCFS

Jobs Enter Here

pshort — predicted short
plong — predicted long

, plong, predicted size)

icost ¢1+¢;

SPRPT
Lowest

Priority

External Cost Model

|
I
:(, pbshort) or (
I H
: cost ¢ !
| .
| Short
| B IO
I
I
SPRPT | FCFS

Lowest | Highest

Priority : Priority
I
I
I
I
I

DelayPredict

* Short predictions for everyone may get expensive.

e Suppose more expensive predictions are not much more
expensive!

* So what if we do not use short predictions.
* Use predictions after a job has run a long time.

* Instead of 1-bit predictions, run all jobs for time L (FIFO)
under high priority, then move to low priority, predict service
time, and used predicted service time for SPRPT.

DelayPredict

Instead of 1-bit predictions, run all jobs for time L, then predict if still going

Jobs Enter Here Jobs Enter Here

|
I
I
: I
v Prediction I
bounded | bounde
service incomplete | service incomplete
Z > ______ ’ : Z >
| add prediction
I costs ¢
FCFS <PRPT! FCFS ’ SPRPT
I
I
I
I
I
FCFS I
EPrediction Job :
CJvob Server Cost Model | External Cost Model

14 f 14 4
12 4 12 1

10 4 10 4

Cost
Cost

(a) large cost gap, ¢; = 0.5,c2 =4 (b) small cost gap, ¢; = 3.5,¢c2 =4

@ SPRPT |l SkipPredict 4 DelayPredict

Cost Analysis

 SkipPredict and DelayPredict are SOAP-analyzable schemes
* Priority is determined by job’s type (service time and prediction
outcomes) and time in service.
* Best scheme may depend on costs, load

* But both SkipPredict and DelayPredict can be better than SPRPT
when prediction costs are included.

Open guestions

* Other models of costs for predictions?

* Methods to dynamically choose when to pay the cost of
prediction?
* Based on current load?
» “Gittins”-style policies, choose when to predict?
* Features that determine whether to predict in real settings?

* Dedicated prediction servers, vs. prediction+jobs on same
server?

e Other economic models for predictions?

Conclusion of Part 1....

* The theory of scheduling with predictions is historically
understudied, and many interesting (and basic?) open problems
seem available.

* Recent progress in methods (SOAP) is helpful; hopefully more
analysis tools can be added.

* Predictions seem quite powerful and potentially very useful in
practice.

* So we’ll look at a very timely area where there seem to be a lot of
practical papers — LLM scheduling.

* Question: Can queueing theory help?
 Come back for Part 2....

Overview

Part 2
LLM systems as an application of
gueueing with predictions

Three settings of LLM systems

Open questions

Large Language Models (LLMSs) are
everywhere

ChatGPT o4-mini-high + Generate the first slide (pptx) of SIGMETRICS'25 tutorial that

motivates the use of LLMs

Thought for 16 seconds >

Analyzed v

I've created the first SIGMETRICS'25 tutorial slide to motivate using LLMs. You can download it here:

Download the slide (-]

OO P MY v

The generated slide*:

Motivation — Why Bring LLMs into
SIGMETRICS?

/ \ Gjtput: \

e Themes: Queueing models
- Performance benchmarks -

Prompt:

“Summarize all :> :> ML-driven scheduling

50 SIGMETRICS’25 ¢ Insights: Identify gaps in
papers in plain tail-latency analysis &
English” resource modeling

* Trends: Rise of data-driven

optimizations and hybrid
\ / &stems /

* This is the only slide generated by LLM in this talk

Many Users

* ChatGPT has over 400 million weekly active users.
* The platform also sees over 1 billion messages sent per day.

* There are many Al LLMs

Survey: 52% of U.S. adults now
use Al large language models

like ChatGPT
& d e e p S e e I(m M eta AI By Elon. University. News Bureau, staff | March 12,2025

¢ Claude

4 .
Gemini

LLMs are slow

and expensive..

* LLMs run on high-end GPUs such as NVIDIA A100
* Each GPU can only serve a handful of requests per second

Users are not patient

Whyis my 1|

LOnger reSpOnSe . M bl” SO h’gh pL

Imes =
long GPU time =

“My Al assistant takes 17 seconds to respond..”

Scheduling for latency optimization

* Choose which requests to serve when resources are constrained.

* Order pending work (e.g. SRPT, priority queues, FIFO) to minimize
wait.

* Proven to cut average and tail latency in datacenters, OS and cloud
services.

e LLM systems add new twists, with challenges that differ from
traditional queueing systemes.

e Goal of this part: present these challenges and where new research
opportunities lie.

Agenda

* What are LLMs and how do LLM systems work?

* Three settings, challenges, and open questions:
* Scheduling for LLM serving
* Scheduling in compound Al systems
e Scheduling for LLM reasoning tasks

What are LLMs and how do
LLM systems work?

Large Language Model (LLM)

* A type of deep neural network designed to generate human-like text.
* Trained on large amounts of data to capture language patterns, grammar,

1

1

1 Chat Dev tools Copywriting Programming .
' | Gchacpr | | =iDebuild | | ®cohere | | SW ||
\ | messagesia| | @ worp | | copy.ai | [tabnine
' | \¥Sapling| |@cogram | &) Hpewite)

1

1

[

___________ oo

[Large Language Model }

Three Phases in the Life of an LLM

* Training: offline, resource-intensive where models learn from large
datasets.

* Post-training: Improves the model’s responses using additional
techniques like fine-tuning and feedback.

* Inference: usually online, where pre-trained models respond to user
requests.

Today’s focus: Efficiently serving LLM requests during inference.
Examples: ChatGPT.

Input prompt: What is SRPT?

What is SRPT?

[ter O

!

Layer 1

!

Layer 2

!

Layer 3

Shortest

[ter 1

!

Layer 1

!

Layer 2

!

Layer 3

!

How Inference in LLM Works

Autoregressive Decoding

Processing

[ter 3

Layer 1

Layer 2

Layer 3

[ter 10

Layer 1

!

Layer 2

!

Layer 3

!

[EOS]

How Inference in LLM Works

Autoregressive Decoding

What is SRPT?

lter O

!

Attention score

what| 1

(@)
u

is

SRPT

w
=
No

is

what
SRPT

Prefill

Shortest

lter 1

!

Attention score

Shortest

w
=
N}
N

what
is
SRPT

Shortest

Decode

No need to recompute

Remaining

[ter 2

!

Attention score

<
«

No need to recompute

Remaining

w
(SN
No
No
No

what
is
SRPT
Shortest
Remaining

Decode

Key-Value (KV) Cache: What Get Stored

 Save attention (keys and values) for the following iterations to avoid
re-computation.

e Grows with the number of tokens generated.
 Stored in GPU memory, can consume gigabytes per request.

 Memory is limited (40G/80G), storing KV cache for many requests
becomes a bottleneck.

SRPT

weights

ot

1

l

iteration 1

A

y

|

Shortest

KV cache

weights

iteration 2

|

l

|

Remaining| |KV cache

—

L

weights

l

iteration 3

|

|

Processing

KV cache

How Big is the KV Cache

* For a transformer model, the KV cache memory size per request is

approximately:
Memory = 2 X LXHXS XT X dtype_size

%)
Rl
>
Q
S
* Eeo] E
[}
<

 Example: for LLaMA-13B, FP16, sequence length 2,048:

Memory = 2 X 32 X 40 X 128 X 2048 X 2bytes =~ 3.2GH

Execution on Hardware

1. Data movement: model weights and KV cache are transferred from
GPU memory (e.g., HBM) to faster on-chip buffers (e.g., SRAM).

2. Computation: Each token is processed by matrix multiplications in
the transformer layers using on-chip processing units.

3. Write back: The selected token and updated KV entries are written
back to GPU memory.

o Load data

Chip
, ---------------------------
1 1
1

_chi ! Compute
Sl gy i) 1 On-chip Bufffer Mb Computation Units :
1
1

HBM)

t =

0 Store data

- Em Em Em o Em o Em o Em Em Em o Em mm o mm Em Em Em o wm omm wm

Memory-bound vs. Compute-bound in
Inference

* Each token generation involves:
Loading model weights and KV cache from HBM
Computing next token using transformer layers
Storing updated KV cache back to memory

* When token generation is slow due to step (2) - Compute-bound

* When step (1) or (3) becomes the bottleneck - Memory-bandwidth-
bound

Question @

Is the prefill phase compute-bound or memory-bound?
Is the decode phase compute-bound or memory-bound?

Off-chip Memory (e.g. ! Compute

1
1
. - - 1
A n S W e r HBM) : On-chip Bufffer Computation Units .
1 1

A

- o e E Em Em Em mm mm e e e e wm

* Prefill phase (processes the input prompt):
All tokens are processed in parallel through all layers
High compute utilization - typically compute-bound

* Decode phase (generates one token at a time):
One token is generated per step, requiring KV cache reads/writes

Low compute utilization, dominated by memory access - memory-bandwidth-
bound

Open Question [2

* How should we rank requests when prefill and decode phases differ
in size?
* Example: two requests with the same total size

* One: short prefill, long decode
e Other: long prefill, short decode

* The “better” request may depend on hardware characteristics
(compute vs. memory limits)

Batching

e Batching multiple requests helps to reduce the bottleneck by:

* maximizes compute utilization by processing multiple prompts
simultaneously.

* loading model weights once and reusing them for multiple inputs.

* This improves compute utilization and amortizes the cost of loading
model weights

Continuous Batching

* Continuous batching dynamically adds new requests to the batch as
slots free up.

* Modern systems (e.g., vLLM) implement continuous batching with
token-level granularity

T T, T3 Ty Tg T4 Tp Tp T Ty Ty Tq Tg Ty Ty : Ty
Si fgc g' % S fgr S' ” %; Sé
S: 16, 8% Sx |6, 8%, v

33 §J S'J S.j S'j SJ -% 55

S¢| S¢ 1>y siee | Sy Sy 154] > °7 |

Completing seven sequences using continuous batching. Left shows the batch after a single iteration, right shows the batch
after several iterations. Once a sequence emits an end-of-sequence token, we insert a new sequence in its place (i.e.
sequences S5, S6, and S7). This achieves higher GPU utilization since the GPU does not wait for all sequences to complete
before starting a new one.

Source: Anyscale https://www.anyscale.com/blog/continuous-batching-lim-inference

System Perspective

Queue

L EEEEEEEEEE TN
¢

’

I

1

1

LLM deployed on
+ GPU cluster
~ A

. C? : [Transformer Layer]
; JL ! Prepare s
—>9 batch of
E Q g , reque ste [Transformer Layer]
: »n > "
. ' Scheduler :
< bl s
....... FS ?tl{rp.ﬁ':'i.s.h.e.q [le_J_e_SES_ e . [Transformer Layer]
{4 —p |
----- » iteration level Response time : \[Prediction Headj}/ E

The Job Perspective

| output

4 > e B —— e

prefill decode decode decode

yREEEEEEEEEEEREEEEEEEEE,
. Yo,

what| 1 o . "
prompt

|

self attention

EEEEEEEEEEEEEEEEY asEEEEEEEEEEEEEEENY
esUEEEEEEEEEREEREE, o** v, . hes
. . B . .

3
*

.

.*

S

>
S

o

new token

new token new token

KV cache memory ~
f(prompt size) SRPT

w
=
N

add new KV entry add new KV entry

is

add new KV entry

samsEmEEEEEEREEEy
" te,
L] *
“sasnsnsnnnnnnnnnnns®

.

*
3
RLLLELELLLLLLLLLLEELELT TN

o
sassssEssEEEEEEEEEEEE’
EEEEsEEEEEEEEEEEEEEEy
o® L3
o *
“sasssnsnssnnnnnnnnnnns®
SSLLLEEE L LR E LT T LT ION
®sasssssssssmasnmnannns®

what
SRPT

*
*

*
. *
SpEEEEEEEEEEEEEEEEEEEEn®

.
3
.

g
o4 -

*
.

*
G

-

*

. . ‘. .* '., ‘$’
®apusssnssmnmnmnnns® SammsmsmEEEEEEEERS SassmsmsEmEEEEEEEs

At once!

Remaining | 3 | 1 Processing

w
=
N
N

Shortest

N
N
N
w
=
N}
N

No

No

- %] 4 +— +—
o 2 E 17} o 2 |C_L 2w 5 © E +
et Q
o < (O] c < (O]
+— (o' — = (o' -
= @5 = » £ g 2 @5
< < © <
n n e %]
Q
o

KV cache memory ~ f(prompt + output size)

Remaining

Processing

Three LLM System Settings

ST,

=

"I

g

Single LLM Systems

A single LLM
deployment on one
or more GPUs.

Bl

N,

A
R
< adhie

00
=5
=0
Q
oo

&

I

Nl

0
o

I

Q&=
—
=

A

Compound Al Systems

Integrate multiple
components (e.g.,
external APlIs, retrieval
systems).

—O

=

g

L
)
d LE)Q:

LLM Reasoning Systems

Include multi-stage
reasoning (e.g.,
chain-of-thought) for
complex responses.

Key Metrics in LLM Systems

* Compute Cost . .
([j)epeém_ds)on model size (parameter count) and response length (due to autoregressive
ecoding

* Latency: Affected by model size and output length
* Time-to-first-token
* End-to-end response time

* Throughput
Tokens generated per second

* Accuracy
Larger models often yield better responses, but accuracy gains vary by task

* Energy Usage _
Total energy consumed (kWh) and associated carbon emissions

Single LLM Systems

Latency in LLM Inference

¢ A]
4 A3 i

twaiting + TTFT (e + Noutput TPQT

What is SRPT? [token]
' '
1
Layer 1 ' ' Layer 1
1
} ' - ¢
! Layer 2 . ! Layer 2
1 1
! 1
.| ' : ' '
I
' Layer 3 . 'l Layer 3
1
1 ‘ p ‘
|‘ ,
1
' ' \ !
' R \
‘\ " ' '
' ' I}
\‘ Shortest ,' “ [Next token] "
. . ' ’
. N K
‘.

R4
~ -

* Smaller models can reduce latency, but often at the cost of accuracy.

* Our approach focuses on system-level optimizations to minimize latency
without compromising model accuracy.

Size Prediction Challenge

e Size prediction is critical for size-based scheduling

e Qutput length are challenge to predict due to autoregressive
decoding

Predicting request output length

Existing approaches

Method Comments

1. Fine-tuned BERT (S?, Jin et al.) Struggles with high-variance outputs
2. Separate LLM (Zheng et al.) Adds compute and resource overhead
3. Learning to Rank (LTR, Fu et al.) lgnores prompt size (prefill cost)

4. TRAIL (Shahout et al.) Requires refinement during decoding

S

Request,

Request,

Requests
pool

Request,

1. Fine-tuned

BERT

or

2. Separate
LLM

or

-

-

3. Learning to

rank

U

Scheduler
Token-resolution

o 7 — o —

)

or

4. TRAIL

Probing
R
Linear ||
Classifier I
v o n] v b — e .../:

Scheduling Benefits

® VLLM-FCFS A Trail (c=0.8) *+ vLLM-SJF_BERT ® Trail+ (c=0.8) # Trail-BERT

400
Table 4: Performance of sequence scheduling with different response length perception module. - 3301
Throughput (samples/s) T Improvement T Tokens/batch | ; 3007
Q
Vanilla 1.22 377 ¢ 2501
Ground Truth Preditor 2.52 +107% 201 45 2001
-
Pooling + MLP 1.96 +61% 216 c 1501
[LEN]-token Fine-tune 2.10 +72% 210 8 100
Perception Only* 1.40 +15% 328 =
Instruction Tunning (mean) 1.77 +45% 211 501
Instruction Tunning (max) 2.27 +86% 208 0l

Separate LLM

Latency {s/token)

2.0 1

157

1.0 4

0.5 7

0.0+

{a) LLaMA-3-70B, 8GPUs, LM5YS-Chat-1M

20 40 60 80
Request Rate (gp/s)

Trail

—B— FCFS —&— Ranking —§— HRanking wfStarvation Preventian
(b) LLaMA-3-70B, BGPUs, ShareGPT

E 1.5

e

a

(=4

m 1.0

=

c

o 0.5

el

m

—l
T T T T T T 0.0 T T T T T T
5 10 15 20 25 El] L) 1o 15 20 25 3n

Request rate {reqfs) Request rate (regfs)

Figure 5: Influence of starvation prevention on latency

Learning to Rank

Open Question B : Prompt Sharing in Scheduling

* Prompt sharing: when multiple requests contain overlapping input
segments, enabling the system to reuse KV computations.

* How should prompt sharing be incorporated into scheduling
decisions? In scenarios where requests share similar prompts, what
strategies can be employed to batch such requests effectively while
avoiding delays for standalone small requests?

e]em)
Iem)

@]em
@em

how to order?

Question @

* In preemptive scheduling (like SRPT), a running job can be interrupted
(paused or removed) to allow a higher-priority (shorter) job to run.

* Do you think preemptive scheduling is straightforward to implement
in LLM inference systems?

L d

1
1
:—;[LLM] assume batch size=1
1

new arriving

ccccccc

:.Eg%%%—-

L d

1
1
:—;[LLM] assume batch size=1
1

:Eggégg

new arriving

ccccccc

in LLM systems, preemption introduces KV
memory overhead

* In LLMs, pausing a request is costly because KV memory must be
preserved, swapped, or recomputed.

* a challenge absent in traditional queueing systems.

* There are several works address the preemption challenge

Existing works tackle preemption

* FastServe™ uses a Multi-Level Feedback QueueéMLFQ). It maintains
multiple queues with different service thresholds

* When a job exceeds its current level’s threshold, it is preempted and
moved to a lower-priority queue.

* Proposes proactive GPU memory management by swapping KV cache
between GPU and CPU. However, swapping incurs hidden costs:

e |imited PCle bandwidth.

* Fragmented KV cache causes multiple kernel launches and sync
overhead.

* And requests may stall during swap operations.

* Fast Distributed Inference Serving for Large Language Models. Wu et al.

Existing works tackle preemption

* Preempting late-stage requests is wasteful due to large KV cache
already in memory.

* TRAIL* disables preemption once a request reaches a certain age

. . Preemption on Preemption off
threshold ¢ - (predicted size) . S ———

. . C
* Age = the amount of time the job has been served. e of a request

* Young requests (early stage): preemption is cheap (in memory) - allowed.
* Old requests (late stage): preemption is costly - avoided.
* Analyzed with SOAP framework in M/G/1 setting.

* Don’t Stop Me Now: Embedding Based Scheduling for LLMs. Shahout et al. ICLR 2025

Open Question [2

* The cost of preemption varies many factors like: model size, batch
size, available memory, distribution of request sizes.

How can we dynamically tune preemption thresholds based on system
state and request characteristics?

GPU Resource Allocation

* How should GPU resources be orchestrated to balance prefill and
decode workloads?

* Decode-optimized GPUs may benefit from larger memory capacity to
hold many KV caches, even with modest compute

* Prefill-optimized GPUs may prioritize high compute throughput,
requiring less memory but faster execution

Pooled GPUs approach

prefill done; ready for decode

* In a pooled setup, each GPU can handle N
both prefill and decode phases (improves
flexibility and utilization). —>
. \ 4
» After prefill completes, a request may: € PO
* Continue decoding on the same GPU, or orefill and decode 4
* Re-enter the queue and wait for another GPL ~ subequests =3 % & qransfer KV cache
: + post-prefill if decoding
to pick up the decode phase | 49% ona separate GPU.

Dedicated GPUs approach

 The GPU pool is partitioned into two groups:

prefill requests decode requests

* One handles only prefill

.
PR
.t " *
. " .
.
. "

* The other handles only decode ST

F =
L
..
.....
- .,
]

* This resembles a tandem queueing system, but TR PPEETEAA

with added complexity:

]
L]
LI I
-..-
ll...

!

* GPUs may differ in speed (compute vs. 4
memory-optimized) KV cache transfer

e KV cache transfer between prefill and decode
GPUs introduces overhead

Splitwise: Efficient Generative LLM Inference Using Phase Splitting, Patel et al. ISCA 2024

https://ieeexplore.ieee.org/author/37090032571

Open Question [2

 How can scheduling policies coordinate prefill and decode across
GPUs with varying compute and memory capabilities?

* Can gueueing models, particularly tandem queues, help optimize
scheduling in the dedicated GPU setup?

* Can a group of lower-capacity GPUs match or exceed the
performance of a single high-end GPU?

* Requires modeling of KV cache transfer overhead, interconnect
bandwidth, and power consumption.

* Theoretical and empirical analysis needed to guide when to scale
up vs. scale out

Compound Al Systems

Compound Al systems

 So far, we've focused on scheduling for a single LLM.

* Al systems today are increasingly compound: they integrate multiple
LLMs and external tools.
* Augmented LLMs — external tool use.
* Information retrieval — RAG.

* As compound systems grow, efficient scheduling and coordination
across modules becomes a central challenge.

Augmented LLMs

e Extend standard LLMs by integrating external tools
Examples: calculators for math, image generators for visual output,
virtual machines for code execution

* API call durations can range from milliseconds to several seconds

e KV cache may remain allocated during API calls, depending on how
the system manages the request

* Different augmentation types require handling strategies
A single strategy is unlikely to perform well across all cases

Handling Requests with API Calls: Three
Strategies

1. Preserve: keeps the KV cache in memory while waiting for an API
reSponse. mMemory wasteful during the call.

2. Discard and Recompute: discards and re- computes the KV matrices
from the start once the API returns. Re-computation overhead

3. Swap: offloads the KV cache to the CPU to free up memory, and
reloads it when the API returns.

Pausing running requests and managing data transfer between CPU and GPU
memory

Memory consumption of the handling
strategies

Memory consumption over time for a request with one API call. The
highlighted area represents memory waste for one request.

Y5 2 »
/
/
Yai
Y51 L d
E’ < E’ E‘ﬂ "1 '
o3 b 'O o o /1
S £ ya ? § Evs \
g y2] g Y3 "E %J
/ I / 2] ! \ i
[
Y11 Y2 Il’ i ’:’ / ‘l‘ !
API Call | ! i/ !
j il /APl Call]/ \ API Call
! ! | > ! ! | |
01 @ 01 @ >——o—4¢ 04 SR VU — ®
t; ty t3 ta 0 t t t3 ti t5 ts 0 t, t) ts ta
Time Time Time

Preserve Discard and Recompute Swap

No one strategy for all API calls

[API duration J

Shor:/\ng

[Preserve] [Pre-API duration]

Shorj/\fng

InferCept: Efficient Intercept Support for Augmented Large Language Model Inference. Abhyankar et al. ICML 2024

https://arxiv.org/search/cs?searchtype=author&query=Abhyankar,+R

Traditional Scheduling don't work with API

R1 Rg R3
Total length 6 2 3
API start after 5 1 2
* Exam P le API duration 2 7 1
Memory action | Preserve | Discard | Swap
Ry ZA : a7 | | :2
- | Mean latency: 11.66

first come first serve

— Mean latency: 10.33

Shortest jobs first

1

ShOrteSt (SiZE+AP| duration) flrSt {275 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 Meanlatency:11

Opt”‘nal'P . .Rl,A.PI].é}PL:Hea ————

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean latency: 10

(AR AP| recom
a5
R; |R;i|Rs Ry 2| R R;
— N\ A | | | | | | I
API

MARS: Memory-Aware Scheduling for
Augmented LLMs*

* First system to go beyond FIFO for scheduling augmented LLMs
* Proposes a predictive, memory-aware scheduler that jointly handles:
* API strategy selection
* Request prioritization
* Integrates scheduling and APl handling

* Determines optimal handling strategy (Preserve, Discard, Swap)
before process the request

* Rank requests based on memory consumption over time.

* Fast Inference for Augmented Large Language Models. Shahout et al. 2024

Step 1

* So we need to predict or estimate: APl duration and the length of the
pre-API| output

* For each request, we pick the strategy with the minimal KV cache
memory waste (yellow area and impact on the system)

y ¥s
Ya
E-. < ay ? a%
oY G G o /| o
!
e Evys ’ E va 1 s
v, o ! [J]
= = v i = VY3
] I yz /.’
7 "API Call y L e | / ’ {
y L J £ |API Call / g/ { API Calli
01 e 01 @ S I N - ol ¢ P S— 'y
t t; ts ta 0 t t ts ta ts s t t, t3 t t
Time Time Time

(a) Preserve (b) Discard (c) Swap

Step 2

* Consider the handling strategy in the scheduling ranking

Ys //,
Ya s
- - >Va bt
o) GRS B o 5
E ’ (]EJ Ya 4 ¢ E Y3
2 v 2 g fo0 ,'
/ Y2 F | 7 y2 / ‘.I ,'J
ny s API Call ni s ! '
11/ YAPICa 7 \ -API C
all
0 CI 0ie o————o-— —-d ; I‘
04 ¢
0 ty t t3 0 ty t; t3 4 ts te -
Time 1 2
Time Time

* Check: Wlthout API calls, this is the same as ranklng accordmg to
request length.

Scheduling CPU

—— N memory A
1y IR (] \
S |- . - D Running Q . swap ou vﬁp in
al:|g| : DD unning Queue \ RIS 220
() (| ?n : ol - | { ‘ Scheduler
! cl: 9] : . A cache |
Request, I o %. : 1 / | |
Re : W= : /I ' |
queStZ | 3 tannnn? | :
el (2] IO | |
: o v : | .
Requests ! b | X - § A Sehediller l l
Pool B AR NHE lum | | g 2 »
|| = © I | IS 5
. I - : . . 1 Call n / API Call V; f;ﬂP'\CI
i E \ | | | ! " 'rl[i‘i ! ; u; : :T;;n: Tima
: <L T | | AR et ,_--“*’—
Requesty, I 5 <+ D [:] RN L
i g_ Discard Queue \I\I I S ok
S S . \ J | [l[] f
T § 0O Swapped Queue UN ! [:] ‘C] C]
\ R P OO0 K GPU}e\ory
“ Paused Queue /
N ~—— -
'~ N

= out-memory requests-

leves lower latency and

MARS ach
fastertimeto f

(TTFT)

irst token

Vicuna 13B

GPT-] 6B

Mean

=1
O
T

(5) Asuale 373

=
=]
™~

a[durg

Fag

x
= o
=2
[Ta}]

400

f=1
o]
=
—

{s5) Azuaye 373

umpy

Axuaie 3z3

ooof -~
0

(s) Asumyen 323

youagool

=@ MARS

vanilla vLLM -d= |INFERCEPT

 n

E2ZE Latency (s)

MARS breakdown

6001

4001

2001

oLE

Mean

3 4 5 6
Request Rate (req/s)

[
=]
o
]

EZE Latency (s)
wn
o
=]

0

Mean
0 A |
= 10%{% N b
= >IN
-
3 4 5 6 3 4 5 6

Request Rate (req/s) Request Rate (req/s)

o [INFERCEPT

10°

TTFT (s)

MARS w/o scheduling

P99

-
Request Rate (req/s)

s MARS

Throughput (req/s)

04 E

Request Rate (req/s)

Open Question [2

* What theoretical guarantees can we establish for scheduling API-
augmented requests?
Can we develop simplified abstractions with provable bounds to guide
practical scheduler design?

Multiple LLMs Available

 Compound Al systems often include LLMs of different sizes.
* Model size affects runtime, cost, and output quality:
* Smaller models are sufficient for simple queries.

e Larger models provide better reasoning for complex prompts, but with higher
cost and latency.

* Always using large models leads to unnecessary cost, latency, and resource load.

* Prediction beyond size: In this setting, we aim to predict answer quality, not just
output length.

* Implication: Enables routing based on query complexity and size.

Multiple LLMs Needed

 Many compound Al systems require multiple LLMs working together
* There are multiple settings:

* One setting: each LLM handles a specific subtask, and a coordinator
aﬁgregates the outputs
challenge: assign subtasks to heterogeneous GPUs to maximize
parallelism and minimize coordination overhead
Emphasizes parallel, independent subtasks

* Another setting: each stage refines the output of the previous one
challenge: manage stage dependencies and balance pipeline
execution with synchronization
Focuses on ordered, interdependent computation

Open Question [2

* How can we design effective scheduling algorithms for multi-LLM

systems
both for the two settings?

e Can predictions go beyond output size, for example, predicting the
execution path (which LLMs will be needed)?

 How can such predictions guide scheduling decisions in multi-LLM
systems?

Reasoning Systems

Scheduling in LLM Reasoning Systems

Modern LLMs can handle complex reasoning tasks

 Examples: math, code generation, legal analysis

They do this by exploring multiple reasoning paths and selecting the best one

This requires inference-time algorithms that go beyond standard generation

Reasoning Process:
* Expansion: Generate candidate reasoning paths

* Aggregation: Combine or select from candidates to produce the final answer

Open Research Challenges

e Ranking # token length: True “request size” includes the number of reasoning
steps and tokens per step

* Scheduling requires adaptive predictions:

* Predict reasoning complexity (e.g., easy/moderate/hard)

e Estimate token count per path
* Update predictions and scheduling decisions as intermediate outputs arrive
* Dynamic resource allocation:

e Allocate more compute to promising branches

* Terminate unpromising ones early

Queueing, Predictions, and LLMs: Challenges and Open Problems

Michael Mitzenmacher! and Rana Shahout!

'Harvard University, USA

Abstract

Queueing systems present many opportunities for applying machine-learning predictions,
such as estimated service times, to improve system performance. This integration raises numer-
ous open guestions about how predictions can be effectively leveraged to improve scheduling
decisions. Recent studies explore queues with predicted service times, typically aiming to mini-
mize job time in the system. We review these works, highlight the effectiveness of predictions,
and present open questions on queue performance.

We then move to consider an important practical example of using predictions in scheduling,
namely Large Language Model (LLM) systems, which presents novel scheduling challenges and
highlights the potential for predictions to improve performance. In particular, we consider
LLMs performing inference. Inference requests (jobs) in LLM systems are inherently complex;
they have variable inference times, dynamic memory footprints that are constrained by key-
value (KV) store memory limitations, and multiple possible preemption approaches that affect
performance differently. We provide background on the important aspects of scheduling in LLM
systems, and introduce new models and open problems that arise from them. We argue that
there are significant opportunities for applying insights and analysis from queueing theory to
scheduling in LLM systems.

1 Introduction

In this paper, we survey recent work on using predictions in queueing systems, as well as recent work
on the specific setting of scheduling in Large Language Model (LLM) systems, where predictions
seem both useful and natural. We focus on presenting several open questions for consideration.
Our purpose is to highlight the work in these areas, and encourage researchers to tackle the many
interesting problems raised by systems that make use of predictiunsm

To introduce the queueing theoretic problems, let us consider a standard queue, such as an
M/G/1 queue — where jobs arrive to a single-server queue, according to a Poisson arrival process

