
Queueing Predictions and LLMs
Challenges and Open Problems

Part 1

Michael Mitzenmacher

Part 2

Rana Shahout

Harvard University

Survey Article That Goes With The Talk

Simple Scheduling Example

• Suppose I have m short jobs requiring service time s, and n
long jobs requiring service time t. I’m interested in average
time in the system.

• I don’t know which jobs are which, and schedule randomly.
• Expected time is:

• I know which jobs are which, and schedule short jobs first.
• Expected time is:

Simple Scheduling Example

• Suppose I have m short jobs requiring service time s, and n
long jobs requiring service time t. I’m interested in average
time in the system.

• I know which jobs are which, and schedule short jobs first.

• Expected time is:
(𝑚2−𝑚)𝑠+(𝑛2−𝑛)𝑡+𝑚𝑛𝑠

2(𝑛+𝑚)

• I don’t know which jobs are which, and schedule randomly.

• Expected time is:
𝑚+𝑛 𝑚−1 𝑠+ 𝑛−1 𝑡 +𝑚𝑡+𝑛𝑠

2(𝑛+𝑚)

Prediction Question

• What if we have predictions:
• Short jobs are predicted long incorrectly with probability p

• Long jobs are predicted short incorrectly with probability q

Prediction Question

• What if we have predictions:
• Short jobs are predicted long incorrectly with probability p

• Long jobs are predicted short incorrectly with probability q

• Expression is a little ugly. Nice homework exercise though.

Prediction Question

• What if we have predictions:
• Short jobs are predicted long incorrectly with probability p

• Long jobs are predicted short incorrectly with probability q

• Expression is a little ugly. Nice homework exercise though.

• Asymptotic gap from optimal

• Predictions:
𝑛𝑚(𝑡−𝑠)(𝑝+𝑞)

2(𝑛+𝑚)

• Random:
𝑛𝑚(𝑡−𝑠)

2(𝑛+𝑚)

Motivating Example: Search

2 4 7 11 16 22 37 38 44 88 89 93 95 96 97 98 99

Given a sorted array of integers A[1...n], and a query q check if q is in the array.

Motivating Example: Search

2 4 7 11 16 22 37 38 44 88 89 93 95 96 97 98 99

7

Given a sorted array of integers A[1...n], and a query q check if q is in the array.

Motivating Example: Search

2 4 7 11 16 22 37 38 44 88 89 93 95 96 97 98 99

7

Binary Search

Given a sorted array of integers A[1...n], and a query q check if q is in the array.

Motivating Example: Search

2 4 7 11 16 22 37 38 44 88 89 93 95 96 97 98 99

7

Binary Search

Given a sorted array of integers A[1...n], and a query q check if q is in the array.

Motivating Example: Search

2 4 7 11 16 22 37 38 44 88 89 93 95 96 97 98 99

7

Predict where q appears; use doubling binary search.

Given a sorted array of integers A[1...n], and a query q check if q is in the array.

Search Costs

• Binary search: O(log n)

• Prediction-based search: O(log |prediction error|)
• Plus time to do the prediction.

• Robust: In the worst case, prediction-based search is also
O(log n)
• Not “worse” than binary search (at least symptotically)

• Consistent: In the best case (and even “near-best-case”),
prediction-based search is constant-time.
• Essentially optimal with perfect information.

Search Costs

• Binary search: O(log n)

• Prediction-based search: O(log |prediction error|)
• Plus time to do the prediction.

• Robust: In the worst case, prediction-based search is also
O(log n)

• Consistent: In the best case (and even “near-best-case”),
prediction-based search is constant-time.

Machine Learning Can Improve Traditional Algorithms

Motivation

• “Traditional” algorithms based on worst-case analysis.
• Very important analysis paradigm.

• Has moved theory and practice forward dramatically.

• But “worst-case” isn’t everything.

• Theory has tried to move beyond worst-case analysis
• Random/perturbed/limited inputs

• Approximation algorithms/heuristics

• Machine learning offers possibilities for new algorithmic
paradigms

Survey Article: Mitzenmacher and Vassilvitskii
Algorithms with Predictions, https://arxiv.org/abs/2006.09123

https://arxiv.org/abs/2006.09123

Using Machine Learning: Predictions

• Machine learning can be used to provide predictions

• Given good predictions, can we get better than worst-case
algorithms.
• Question: what should we allow when predictions are bad?

• Would like provable statements.
• Because I’m theoretically inclined.

• If my predictions are X-good, my algorithm’s performance will be Y.

• We call this algorithms with predictions or learning-
augmented algorithms.

Queues

Standard Queueing Model

• Arrival Process
• Usually Poisson arrivals; exponentially distributed service times

• Service Time
• For theory, exponential service times are nice
• In practice, some kind of heavy-tailed distribution
• In simple models, service time is unknown

• Service Discipline
• First-In First-Out (FIFO), = First-Come First-Served
• Others possible
• Preemption

Main Result for Standard Queues

• For M/M/1 queues
• FIFO queues

• Poisson arrivals of rate λ < 1

• Exponential service times with mean 1

• The steady state expected time in the system is

1/(1 − 𝜆)

Known Service Times

• Can do better if service times are known.
• Shortest job first. (Non-preemptive.)

• Shortest remaining processing time. (Preemptive.)

• Preemptive shortest job first. (Preemptive.)

• All of these have known formulae for Poisson arrivals,
general service time distributions.

Predicted Service Times

• Suppose we have an ML algorithm that can predict service
times. Then we can consider policies:
• Shortest predicted job first (SPJF).

• Shortest predicted remaining service time (SPRPT).

• Preemptive shortest predicted job first (PSPJF).

• A natural probabilistic model:
• Service distribution given by density function g(x,y),

representing density of jobs with true service time x and
predicted service time y.

Shortest Job First Queues

• Let S be service distribution, 𝑓𝑠 the density.

• Analysis uses that once a job arrives, can ignore jobs with higher
service times that arrive.

• So only important quantities for a job with service time x are:

• Expected waiting time in queue for job of service time x given by

𝜌 = 𝜆 𝑡=0׬
∞

𝑡𝑓𝑠(𝑡)dt

𝜌𝑥 = 𝜆 𝑡=0׬
𝑥

𝑡𝑓𝑠(𝑡)dt

Rate of inflow of work

Rate of inflow of work for jobs with service ≤ 𝑥

𝐸 𝑊 𝑥 = 𝜌𝐸[𝑆2]
2𝐸[𝑆]](1−𝜌𝑥)

2

Shortest Predicted Job First Queues

• Let S be service distribution, 𝑓𝑠 the density, g(x,y) joint service-
prediction density, 𝑓𝑝 the density of predicted service times.

• Analysis uses that once a job arrives, can ignore jobs with higher
predicted service times that arrive.

• So only important quantities for a job with service time x are:

• Expected waiting time in queue for job of predicted time y given by

𝜌 = 𝜆 𝑡=0׬
∞

𝑡𝑓𝑠(𝑡)dt

𝜌′𝑦 = 𝜆 𝑡=0׬
𝑦

𝑥=0׬
∞

𝑥𝑔(𝑥, 𝑡) dx dt

Rate of inflow of work

Rate of inflow of work for jobs with
predicted service ≤ 𝑦

𝐸 𝑊′ 𝑦 = 𝜌𝐸[𝑆2]
2𝐸[𝑆](1−𝜌′𝑦)

2

Price of Misprediction

• A competitive ratio formulation: price of misprediction
• What is the (worst-case) ratio of the expected total waiting time

using the ML algorithm compared to having perfect information?

• Not vs OPT, but vs algorithm

• End result: by integrating over service/predicted service
times, get a “simple” formula for price of misprediction for
shortest job first.

𝑦=0׬
∞ 𝑓𝑝(𝑦)

(1−𝜌′
𝑦
2)
𝑑𝑦

𝑥=0׬
∞ 𝑓𝑠(𝑥)

(1−𝜌𝑥
2)

𝑑𝑥

SOAP : A Key Analysis Method
• These policies can be analyzed directly

• But there’s a useful general methodology, that is useful for scheduling
with predictions

• SOAP: Schedule Ordered by Age-based Priority
• Ziv Scully, Mor Harchol-Balter, Alan Scheller-Wolf

• M/G/1 queues: can calculate expected time in system in
equilibrium
• Job priority determined by a “rank” (lowest rank wins)
• Rank can depend on a job type (known, fixed on entry) and the amount

of service received.
• Example: SRPT– a job’s type is its service time s, received service a, rank would

be s – a.
• Example: SPRPT– a job’s type is its service and predicted time (s,z), received

service a, rank would be z – a.

Scheduler

• More generally, instead of thinking of policies, think of a
scheduler decdides what job gets served at any point in time.

• SOAP allows analysis of a broader class of interesting
schedulers.
• Schedulers based on suitable rank functions.

Test Examples
Service times are exponentially distributed, mean 1
Prediction times for a job of true size x is exponentially distributed with mean x

Equations and simulations match.
Significant improvements over no information, especially under high loads.

Open Questions

• Better/more realistic models of predictions?
• Models of point predictions.

• Predictions as distributions, instead of point values.

• Predictions that degrade over time.

• Extensions of SOAP?
• Rank cannot depend on queue state, such as number of jobs in the

queue.

• Gittins-optimal policies?

Weak Predictions: Single Bit

• What if you could only get a “single bit” hint?
• Is the job “short” or “long”?

• Bigger than some threshold, or smaller?

• Put it in front, or in back?

• A natural model
• May be an easier prediction problem

• May be easier to implement (no need to remember times)

• May be limited in communication

Single Bit Model

• Use a threshold: above a threshold is big, below is small.

• Can consider perfect single bit hints, or hints from
predictions.

• Equations derived in terms of arrival rate, service
distribution, threshold, prediction scheme. (See paper:
Queues with Small Advice.)
• Specific example: exponential model -- job of true size x has

predicted size exponentially distributed with mean x.

• Here we choose optimal threshold from experiments.

Theoretical Results

• Analysis follows standard methods… but model leads to fun integrals.

• Expected sojourn time for exponential service time, non-preemptive,
exponential predictions involves modified Bessel functions of the first
and second kind.

• Expected sojourn time for Weibull service time, non-preemptive,
exponential predictions involves the Meijer G-function.

Results for Single Bit Predictions

Prediction times for a job of true size x is exponentially distributed with mean x
For threshold schemes, consider if prediction is above or below threshold

Results for Single Bit Predictions

Prediction times for a job of true size x is exponentially distributed with mean x
For threshold schemes, consider if prediction is above or below threshold

Open Problems

• Better/more realistic prediction models?

• Can we optimize predictions in this setting?
• Predicting a short job as long is worse than predicting a long job as

short.

• Tail behaviors when using 2 or more classes?
• See Chen and Dong: Scheduling with service-time information: The

power of two priority classes

Obvious Shortcoming for SRPT

• When a prediction is smaller than a job size, predicted
remaining service time will be 0.

• Very bad if a big job is predicted small.

• We should do something for jobs that sit at the front of the
queue with predicted remaining service time 0.

• Examined in: Uniform Bounds for Scheduling with Job Size
Estimates, Scully, Grosof, Mitzenmacher

What We Want From a Scheduling Policy

• Consistent : Near optimal when predictions are good.

• Robust : Not too much worse than not using predictions
when predictions are bad.

• Graceful degradation (smoothness) : performance degrades
gracefully as predictions get worse.

M/G/1 Setting with Predictions

• Performing well with arbitrary errors is too much to ask for.

• Model: 𝛽, 𝛼 -bounded noise [𝛽 for “below”, 𝛼 for “above”]
• True size is s, then estimate z governed by joint distribution on

pairs (s,z), with 𝑧 ∈ 𝛽𝑠, 𝛼𝑠 .

• We find a policy P that is
• C-consistent : ൗ𝐸[𝑇𝑃]

𝐸[𝑇𝑆𝑅𝑃𝑇]
→ 𝐶 as 𝛽, 𝛼 → 1 (𝐶 = 1)

• G-graceful : ൗ𝐸[𝑇𝑃]
𝐸[𝑇𝑆𝑅𝑃𝑇]

≤ 𝐺 Τ𝛼 𝛽 for all 𝛽, 𝛼 (𝐺 = 3.5)

• Show constant robustness, ൗ𝐸[𝑇𝑃]
𝐸[𝑇𝑆𝑅𝑃𝑇]

≤ 𝑅 for all 𝛽, 𝛼, is
not possible.

Scheduling by Rank

Scheduling by Rank

Scheduling by Rank

Scheduling by Rank

Scheduling by Rank

Related Work

• Azar, Leonardi, Touitou consider the online setting (not
queueing theoretic).
• Job size predictions are within a factor µ of actual size.

• Call their algorithms distortion-oblivious (µ does not need to be
known in advance).

• Get O(µ log µ) competitive-ratio where µ is the maximum
distortion.

Open Questions

• Better policies/bounds for graceful degradation and
consistency, in this setting?

• Weaker restrictions on the predictions for such results?

• Bounds for other desirable criteria, such as tail behaviors?

• Could there be advantages to going beyond rank-based
scheduling?

Multiple Servers

• Very few results for using predictions in multiple server
settings!

• Mostly wide open with open questions.
• See survey for more discussion.

• One analyzable system: Power of 2 choices with 1-bit
predictions.
• Power of 2 choices: use fluid limit analysis to analyze limiting

“infinite server” system where each job picks shortest of 2 (or d)
queues.

• With 1-bit predictions, state space is “small” enough can write
limiting differential equations (and calculate them) in some cases.

Open Questions

• Analyze power of 2 choices more generally with predictions?

• Most any multiple server question with predictions remains
open….

Predictions, with Costs

• Algorithms with predictions area is still “new”.

• In theoretical works, common that predictions come for free
• No discussion of costs of prediction

• For scheduling, this seems unnatural.
• Predicting a job’s service time may itself take some server time…

• Interesting extreme case: introducing predictions could overload a
heavily loaded system.
• Predictions may not be helpful, and actively harmful.

Prediction Cost Models

• External Cost Model
• Predictions provided from some external source

• Does not affect service times

• But has some cost, e.g., fixed cost per prediction
• Some jobs may not use a prediction

• Expected cost per job = response time + prediction cost

• Server Time Cost Model
• Predictions require some amount of service time, e.g., fixed time

• Predictions must also be scheduled
• Expected cost per job = response time

New Scheduling Strategies with Costs

• Can re-analyze M/G/1 scheduling schemes like SPRPT, 1-bit
predictions with costs

• But also consider new settings

• Suppose predictions have different costs
• 1-bit predictions are cheap

• Service time predictions are more expensive

• SkipPredict: 1-bit predictions for all jobs, service time
predictions only for predicted long jobs.

SkipPredict, Server Time Model

• A job arrives at a server….
• It needs a 1-bit prediction (short or long), joins 1-bit prediction queue.

• 2nd highest priority.

• If predicted short, it joins a queue for short jobs.
• These jobs have highest priority.

• Served FIFO.

• If predicted long, joins a queue for a second prediction.
• Where its service time is predicted.

• Predicted long jobs served by SPRPT.
• Lowest priority.

SkipPredict

DelayPredict

• Short predictions for everyone may get expensive.
• Suppose more expensive predictions are not much more

expensive!

• So what if we do not use short predictions.

• Use predictions after a job has run a long time.

• Instead of 1-bit predictions, run all jobs for time L (FIFO)
under high priority, then move to low priority, predict service
time, and used predicted service time for SPRPT.

DelayPredict
Instead of 1-bit predictions, run all jobs for time L, then predict if still going

Cost Analysis

• SkipPredict and DelayPredict are SOAP-analyzable schemes
• Priority is determined by job’s type (service time and prediction

outcomes) and time in service.

• Best scheme may depend on costs, load
• But both SkipPredict and DelayPredict can be better than SPRPT

when prediction costs are included.

Open questions

• Other models of costs for predictions?

• Methods to dynamically choose when to pay the cost of
prediction?
• Based on current load?

• “Gittins”-style policies, choose when to predict?

• Features that determine whether to predict in real settings?

• Dedicated prediction servers, vs. prediction+jobs on same
server?

• Other economic models for predictions?

Conclusion of Part 1….

• The theory of scheduling with predictions is historically
understudied, and many interesting (and basic?) open problems
seem available.

• Recent progress in methods (SOAP) is helpful; hopefully more
analysis tools can be added.

• Predictions seem quite powerful and potentially very useful in
practice.
• So we’ll look at a very timely area where there seem to be a lot of

practical papers – LLM scheduling.
• Question: Can queueing theory help?
• Come back for Part 2….

Overview

Part 1

Queueing and Predictions

Cost of predictions

Open questions

Part 2
LLM systems as an application of
queueing with predictions

Three settings of LLM systems

Open questions

Large Language Models (LLMs) are
everywhere

* This is the only slide generated by LLM in this talk

The generated slide*:

Many Users

• ChatGPT has over 400 million weekly active users.

• The platform also sees over 1 billion messages sent per day.

• There are many AI LLMs

LLMs are slow
and expensive..

• LLMs run on high-end GPUs such as NVIDIA A100

• Each GPU can only serve a handful of requests per second

Users are not patient

“My AI assistant takes 17 seconds to respond..”

Scheduling for latency optimization

• Choose which requests to serve when resources are constrained.

• Order pending work (e.g. SRPT, priority queues, FIFO) to minimize
wait.

• Proven to cut average and tail latency in datacenters, OS and cloud
services.

• LLM systems add new twists, with challenges that differ from
traditional queueing systems.

• Goal of this part: present these challenges and where new research
opportunities lie.

Agenda

• What are LLMs and how do LLM systems work?

• Three settings, challenges, and open questions:
• Scheduling for LLM serving

• Scheduling in compound AI systems

• Scheduling for LLM reasoning tasks

What are LLMs and how do
LLM systems work?

Large Language Model (LLM)

• A type of deep neural network designed to generate human-like text.

• Trained on large amounts of data to capture language patterns, grammar,
and even context.

Large Language Model

Three Phases in the Life of an LLM

• Training: offline, resource-intensive where models learn from large
datasets.

• Post-training: Improves the model’s responses using additional
techniques like fine-tuning and feedback.

• Inference: usually online, where pre-trained models respond to user
requests.

Today’s focus: Efficiently serving LLM requests during inference.

Examples: ChatGPT.

How Inference in LLM Works
Autoregressive Decoding

Input prompt: What is SRPT?

What is SRPT?

Shortest

Layer 1

Layer 2

Layer 3

Iter 0

Remaining

Layer 1

Layer 2

Layer 3

Iter 1

Processing

Layer 1

Layer 2

Layer 3

Iter 2

Time

Layer 1

Layer 2

Layer 3

Iter 3

[EOS]

Layer 1

Layer 2

Layer 3

Iter 10

…

Shortest Remaining Processing

How Inference in LLM Works
Autoregressive Decoding

What is SRPT?

Iter 0

…

Iter 2

Remaining

6

1

3

5

1 2

what

is

SRPT

w
h

at is

SR
P

T

Attention score

Prefill

Shortest

Iter 1

6

1

3

5

1 2

what

is

SRPT

Attention score

3 1 2 2Shortest
Sh

o
rt

es
t

Decode

No need to recompute
w

h
at is

SR
P

T

6

1

3

5

1 2

what

is

SRPT

Attention score

3 1 2 2Shortest

Decode

No need to recompute

3 1 2 2 2

Sh
o

rt
es

t

w
h

at is

SR
P

T

Remaining

R
em

ai
n

in
g

Key-Value (KV) Cache: What Get Stored

• Save attention (keys and values) for the following iterations to avoid
re-computation.

• Grows with the number of tokens generated.

• Stored in GPU memory, can consume gigabytes per request.

• Memory is limited (40G/80G), storing KV cache for many requests
becomes a bottleneck.

iteration 1

what

Shortest

is SRPT weights

KV cache

iteration 2

Remaining KV cache

weights

iteration 3

Processing KV cache

weights

…

How Big is the KV Cache

• For a transformer model, the KV cache memory size per request is
approximately:

Memory ≈ 2 × 𝐿 × 𝐻 × 𝑆 × 𝑇 × dtype_size

• Example: for LLaMA-13B, FP16, sequence length 2,048:

Memory ≈ 2 × 32 × 40 × 128 × 2048 × 2bytes ≈ 3.2GB

#l
ay

er

#h
ea

d
s

h
e

ad
 s

iz
e

#t
o

ke
n

s

Execution on Hardware

1. Data movement: model weights and KV cache are transferred from
GPU memory (e.g., HBM) to faster on-chip buffers (e.g., SRAM).

2. Computation: Each token is processed by matrix multiplications in
the transformer layers using on-chip processing units.

3. Write back: The selected token and updated KV entries are written
back to GPU memory.

Memory-bound vs. Compute-bound in
Inference
• Each token generation involves:

Loading model weights and KV cache from HBM

Computing next token using transformer layers

Storing updated KV cache back to memory

• When token generation is slow due to step (2) → Compute-bound

• When step (1) or (3) becomes the bottleneck → Memory-bandwidth-
bound

Question💡
Is the prefill phase compute-bound or memory-bound?
Is the decode phase compute-bound or memory-bound?

Answer

• Prefill phase (processes the input prompt):
All tokens are processed in parallel through all layers

High compute utilization → typically compute-bound

• Decode phase (generates one token at a time):
One token is generated per step, requiring KV cache reads/writes

Low compute utilization, dominated by memory access → memory-bandwidth-
bound

Open Question 🧩

• How should we rank requests when prefill and decode phases differ
in size?

• Example: two requests with the same total size
• One: short prefill, long decode

• Other: long prefill, short decode

• The “better” request may depend on hardware characteristics
(compute vs. memory limits)

Batching

• Batching multiple requests helps to reduce the bottleneck by:
• maximizes compute utilization by processing multiple prompts

simultaneously.

• loading model weights once and reusing them for multiple inputs.

• This improves compute utilization and amortizes the cost of loading
model weights

Continuous Batching

• Continuous batching dynamically adds new requests to the batch as
slots free up.

• Modern systems (e.g., vLLM) implement continuous batching with
token-level granularity

Source: Anyscale https://www.anyscale.com/blog/continuous-batching-llm-inference

System Perspective

Queue

Server

Response time

The Job Perspective
prompt

prefill

prompt

self attention

KV cache memory ~ f(prompt + output size)

What is SRPT?

output

Shortest Remaining Processing …

At once!

KV cache memory ~
f(prompt size)

6

1

3

5

1 2

what

is

SRPT

w
h

at is

SR
P

T

decode

new token

add new KV entry

3 1 2 2Shortest

Sh
o

rt
es

t

w
h

at is

SR
P

T

new token

add new KV entry

3 1 2 2 2

Sh
o

rt
es

t

w
h

at is

SR
P

T

Remaining

R
em

ai
n

in
g

decode

new token

add new KV entry

3 1 2 2 2

Sh
o

rt
es

t

w
h

at is

SR
P

T

Processing

R
em

ai
n

in
g

2

Pr
o

ce
ss

in
g

decode

Three LLM System Settings

Single LLM Systems Compound AI Systems LLM Reasoning Systems

A single LLM
deployment on one
or more GPUs.

Integrate multiple
components (e.g.,
external APIs, retrieval
systems).

Include multi-stage
reasoning (e.g.,
chain-of-thought) for
complex responses.

Key Metrics in LLM Systems

• Compute Cost
Depends on model size (parameter count) and response length (due to autoregressive
decoding)

• Latency: Affected by model size and output length

• Time-to-first-token

• End-to-end response time

• Throughput
Tokens generated per second

• Accuracy
Larger models often yield better responses, but accuracy gains vary by task

• Energy Usage
Total energy consumed (kWh) and associated carbon emissions

Single LLM Systems

Latency in LLM Inference

𝑡𝑤𝑎𝑖𝑡𝑖𝑛𝑔 + TTFT(𝑛input) + 𝑛output ⋅ TPOT

• Smaller models can reduce latency, but often at the cost of accuracy.

• Our approach focuses on system-level optimizations to minimize latency
without compromising model accuracy.

What is SRPT?

Shortest

Layer 1

Layer 2

Layer 3

[token]

[Next token]

Layer 1

Layer 2

Layer 3

Size Prediction Challenge

• Size prediction is critical for size-based scheduling

• Output length are challenge to predict due to autoregressive
decoding

Predicting request output length
Existing approaches

Method Comments

1. Fine-tuned BERT (S³, Jin et al.) Struggles with high-variance outputs

2. Separate LLM (Zheng et al.) Adds compute and resource overhead

3. Learning to Rank (LTR, Fu et al.) Ignores prompt size (prefill cost)

4. TRAIL (Shahout et al.) Requires refinement during decoding

1. Fine-tuned

BERT

2. Separate

LLM

or

3. Learning to

rank

or

4. TRAILor

Scheduling Benefits

Learning to Rank

Trail

Separate LLM

Open Question 🧩 : Prompt Sharing in Scheduling

• Prompt sharing: when multiple requests contain overlapping input
segments, enabling the system to reuse KV computations.

• How should prompt sharing be incorporated into scheduling
decisions? In scenarios where requests share similar prompts, what
strategies can be employed to batch such requests effectively while
avoiding delays for standalone small requests?

prompt

prompt

prompt

output

prompt

output

output

how to order?

output

Question💡
• In preemptive scheduling (like SRPT), a running job can be interrupted

(paused or removed) to allow a higher-priority (shorter) job to run.

• Do you think preemptive scheduling is straightforward to implement
in LLM inference systems?

Preemption Challenge; without preemption

LLM

Queue

assume batch size=1

new arriving

KV cache

Time

new arriving

Preemption Challenge; with preemption

LLM

Queue

assume batch size=1

new arriving

KV cache

Time

new arriving

in LLM systems, preemption introduces KV
memory overhead

• In LLMs, pausing a request is costly because KV memory must be
preserved, swapped, or recomputed.
• a challenge absent in traditional queueing systems.

• There are several works address the preemption challenge

Existing works tackle preemption

• FastServe* uses a Multi-Level Feedback Queue (MLFQ). It maintains
multiple queues with different service thresholds.

• When a job exceeds its current level’s threshold, it is preempted and
moved to a lower-priority queue.

• Proposes proactive GPU memory management by swapping KV cache
between GPU and CPU. However, swapping incurs hidden costs:

• limited PCIe bandwidth.

• Fragmented KV cache causes multiple kernel launches and sync
overhead.

• And requests may stall during swap operations.

* Fast Distributed Inference Serving for Large Language Models. Wu et al.

Existing works tackle preemption

• Preempting late-stage requests is wasteful due to large KV cache
already in memory.

• TRAIL* disables preemption once a request reaches a certain age
threshold 𝑐 ⋅ (predicted size)
• Age = the amount of time the job has been served.

• Young requests (early stage): preemption is cheap (in memory) → allowed.

• Old requests (late stage): preemption is costly → avoided.

• Analyzed with SOAP framework in M/G/1 setting.

* Don’t Stop Me Now: Embedding Based Scheduling for LLMs. Shahout et al. ICLR 2025

Life of a request

𝑐

Preemption offPreemption on

Open Question 🧩

• The cost of preemption varies many factors like: model size, batch
size, available memory, distribution of request sizes.

How can we dynamically tune preemption thresholds based on system
state and request characteristics?

GPU Resource Allocation

• How should GPU resources be orchestrated to balance prefill and
decode workloads?

• Decode-optimized GPUs may benefit from larger memory capacity to
hold many KV caches, even with modest compute

• Prefill-optimized GPUs may prioritize high compute throughput,
requiring less memory but faster execution

Pooled GPUs approach

• In a pooled setup, each GPU can handle
both prefill and decode phases (improves
flexibility and utilization).

• After prefill completes, a request may:
• Continue decoding on the same GPU, or

• Re-enter the queue and wait for another GPU
to pick up the decode phase

Dedicated GPUs approach

• The GPU pool is partitioned into two groups:

• One handles only prefill

• The other handles only decode

• This resembles a tandem queueing system, but
with added complexity:

• GPUs may differ in speed (compute vs.
memory-optimized)

• KV cache transfer between prefill and decode
GPUs introduces overhead

Splitwise: Efficient Generative LLM Inference Using Phase Splitting, Patel et al. ISCA 2024

https://ieeexplore.ieee.org/author/37090032571

Open Question 🧩

• How can scheduling policies coordinate prefill and decode across
GPUs with varying compute and memory capabilities?

• Can queueing models, particularly tandem queues, help optimize
scheduling in the dedicated GPU setup?

• Can a group of lower-capacity GPUs match or exceed the
performance of a single high-end GPU?

• Requires modeling of KV cache transfer overhead, interconnect
bandwidth, and power consumption.

• Theoretical and empirical analysis needed to guide when to scale
up vs. scale out

Compound AI Systems

Compound AI systems

• So far, we’ve focused on scheduling for a single LLM.

• AI systems today are increasingly compound: they integrate multiple
LLMs and external tools.
• Augmented LLMs — external tool use.

• Information retrieval — RAG.

• As compound systems grow, efficient scheduling and coordination
across modules becomes a central challenge.

Augmented LLMs

• Extend standard LLMs by integrating external tools
Examples: calculators for math, image generators for visual output,
virtual machines for code execution

• API call durations can range from milliseconds to several seconds

• KV cache may remain allocated during API calls, depending on how
the system manages the request

• Different augmentation types require handling strategies
A single strategy is unlikely to perform well across all cases

Handling Requests with API Calls: Three
Strategies
1. Preserve: keeps the KV cache in memory while waiting for an API

response.

2. Discard and Recompute: discards and re- computes the KV matrices
from the start once the API returns.

3. Swap: offloads the KV cache to the CPU to free up memory, and
reloads it when the API returns.

Memory wasteful during the call.

Re-computation overhead

Pausing running requests and managing data transfer between CPU and GPU
memory

Memory consumption of the handling
strategies

Preserve

Memory consumption over time for a request with one API call. The
highlighted area represents memory waste for one request.

Discard and Recompute Swap

No one strategy for all API calls

API duration

Short Long

Pre-API duration

Short Long

Discard Swap

Preserve

InferCept: Efficient Intercept Support for Augmented Large Language Model Inference. Abhyankar et al. ICML 2024

https://arxiv.org/search/cs?searchtype=author&query=Abhyankar,+R

Traditional Scheduling don't work with API

• Example:

first come first serve

Shortest jobs first

Shortest (size+API duration) first

Optimal?

Mean latency: 11.66

Mean latency: 10.33

Mean latency: 11

Mean latency: 10

MARS: Memory-Aware Scheduling for
Augmented LLMs*
• First system to go beyond FIFO for scheduling augmented LLMs

• Proposes a predictive, memory-aware scheduler that jointly handles:

• API strategy selection

• Request prioritization

• Integrates scheduling and API handling

• Determines optimal handling strategy (Preserve, Discard, Swap)
before process the request

• Rank requests based on memory consumption over time.

* Fast Inference for Augmented Large Language Models. Shahout et al. 2024

Step 1

• So we need to predict or estimate: API duration and the length of the
pre-API output

• For each request, we pick the strategy with the minimal KV cache
memory waste (yellow area and impact on the system)

Step 2

• Consider the handling strategy in the scheduling ranking

• Check: without API calls, this is the same as ranking according to
request length.

Preserve Discard Swap

MARS achieves lower latency and
faster time to first token (TTFT)

MARS breakdown

Open Question 🧩

• What theoretical guarantees can we establish for scheduling API-
augmented requests?
Can we develop simplified abstractions with provable bounds to guide
practical scheduler design?

Multiple LLMs Available

• Compound AI systems often include LLMs of different sizes.

• Model size affects runtime, cost, and output quality:

• Smaller models are sufficient for simple queries.

• Larger models provide better reasoning for complex prompts, but with higher
cost and latency.

• Always using large models leads to unnecessary cost, latency, and resource load.

• Prediction beyond size: In this setting, we aim to predict answer quality, not just
output length.

• Implication: Enables routing based on query complexity and size.

Multiple LLMs Needed

• Many compound AI systems require multiple LLMs working together

• There are multiple settings:

• One setting: each LLM handles a specific subtask, and a coordinator
aggregates the outputs
challenge: assign subtasks to heterogeneous GPUs to maximize
parallelism and minimize coordination overhead
Emphasizes parallel, independent subtasks

• Another setting: each stage refines the output of the previous one
challenge: manage stage dependencies and balance pipeline
execution with synchronization
Focuses on ordered, interdependent computation

Open Question 🧩

• How can we design effective scheduling algorithms for multi-LLM
systems
both for the two settings?

• Can predictions go beyond output size, for example, predicting the
execution path (which LLMs will be needed)?

• How can such predictions guide scheduling decisions in multi-LLM
systems?

Reasoning Systems

Scheduling in LLM Reasoning Systems

• Modern LLMs can handle complex reasoning tasks

• Examples: math, code generation, legal analysis

• They do this by exploring multiple reasoning paths and selecting the best one

• This requires inference-time algorithms that go beyond standard generation

• Reasoning Process:

• Expansion: Generate candidate reasoning paths

• Aggregation: Combine or select from candidates to produce the final answer

Open Research Challenges

• Ranking ≠ token length: True “request size” includes the number of reasoning
steps and tokens per step

• Scheduling requires adaptive predictions:

• Predict reasoning complexity (e.g., easy/moderate/hard)

• Estimate token count per path

• Update predictions and scheduling decisions as intermediate outputs arrive

• Dynamic resource allocation:

• Allocate more compute to promising branches

• Terminate unpromising ones early

